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ABSTRACT :  
 

An elementary proof of the Twin Prime Conjecture (TPC) is given.   

A definite integral expression is obtained for 2(N) ; applying the Riemann definition  

of the integral, it is eventually shown that this integral is unbounded, proving TPC.   

 

We also indicate that there exist infinitely many prime pairs (p, q) with p < q  

such that : q – p = 2k, k = 1, 2, … and q - 2p = 1 ; also, we indicate that there exist  

infinitely many prime triplets (p, p+2u, p+2u+2v), provided u and v are chosen so  

as to avoid trivial cases.  

 

KEY WORDS OR TERMS  

 
asymptotic behavior ; counting function ; prime ; Twin Prime Conjecture ;  

twin prime pairs ; m-tuplets of primes with specified differences ; Sophie  

Germain prime pairs.  

 
 
 

 

 

 

 
 
 
 
 
 
 



 3 

A PROOF OF THE TWIN PRIME CONJECTURE  

AND OTHER POSSIBLE APPLICATIONS  

 
by  

 

Paul S. Bruckman  

310 First Street  

Sointula, BC V0N 3E0 (Canada)  
e-mail : pbruckman@hotmail.com  

 
 

 

1. INTRODUCTION :   
 

The primary purpose of this paper is to prove the Twin Prime Conjecture (TPC), 

 

which states that the number of “twin prime” pairs (prime pairs (p, q) such that q = p+2) 

 

is infinite.  In subsequent sections, we also prove a number of similar and more general  

 

conjectures.   

 

We let (n) denote the characteristic function of the odd primes, where n is any  

 

positive integer.  This notation excludes the prime 2, which makes the ensuing analysis  

 

a bit more convenient.  We also introduce the polynomial functions fN and g2:N, defined  

 

as follows for N = 3, 4, … : 

 

fN (z) =



N

3n

nz)n(  (1)  

 

 g2:N (z) = 



N

3n

nz)2n()n(   .   (2)  

 

Clearly, fN and g2:N are polynomials, hence entire functions.  

 

 By the Cauchy integral formula, it follows that for all n  N :  

 

    (n) = dz
z

)z(f

i2

1
1n

N

 
   .     (3) 

 

Here,  is any simple closed contour in the complex plane, taken in the positive  

 

(i.e. counter-clockwise) direction and containing the origin within its interior.   
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We also let x be any real value in the unit interval I  [0,1].   

 

 We may then express g2(x) in terms of f as follows :  

 

g2:N (x) = 



N

3n

nx)n( dz
z

)z(f

i2

1
3n

N

 
= dz

z

)z(f

i2

1
3

N















N

3n

n

z

x
)n( , or :  

 

g2:N (x) = dz
z

)z/x(f)z(f

i2

1
3

NN


    .   (4) 

 

We may suppose that  is the circle {z = r exp(i), 0   < 2}, where 0 < r  1 .  Also,  

 

assume that x = r
2
 , so that 

z

x
 = r  I .  Then g2:N (r

2
) = 

 






d
er

)re(f)re(f

2

1 2

0 i22

i
N

i
N  .   

Since g2:N (r
2
) must be real-valued, we then see that  

 

       r
2
 g2:N (r

2
) = 






 d)re(f2cos
2

1 2i
N

2

0
   .   (5)  

 

Now
2i

N )re(f  = fN(re
i

) fN(re
-i

) = )nm(i
N

3m

N

3n

nm e)n()m(r 

 

  , hence : 

 

   
2i

N )re(f   = })nmcos{()n()m(r
N

3m

N

3n

nm 
 

    .  (6)  

 

Note that 
2i

N )re(f    
2

N )r(f   
2

N )1(f = {*(N)}
2
 , where *(N) = (N) - 1 .    

 

Since )re(f i
N

  = 


mcosr)m( m
N

3m

 + i 


msinr)m( m
N

3m

 , an alternative mode of expression  

that avoids double sums is the following :  

2i
N )re(f   = 












2N

3m

m mcosr)m(

2N

3m

m msinr)m(











   (7)  

We make the definition :  

FN()  =
2i

N )e(f  = 











2

Np3

pcos

2

Np3

psin











  (8) 

Also, using (6) : 

 

FN()  =   
 


Np3 Nq3

)qp(cos     (9)  

 

It is found by integrating the expression in (9) that 



0

N d)(F  = (*(N)) .   
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Since FN( - ) = FN() , we see that  

 

 


2






2/

0

N d)(F  = *(N)  (10) 

 

We now make the following definition : 

 

  FN) + FN(/2 - ) = JN()   (11) 

It then follows that :  

 

  


2






4/

0

N d)(J  = *(N)   (12)  

 

2. MORE DEFINITE INTEGRAL EXPRESSIONS : 

 

 Consider the following special values : 

 

    *(N) = fN(1) =



N

3n

)n(  ; (13)  

 

   2(N) = g2:N(1) =. 



N

3n

)2n()n(  (14)  

 

We may set  r = 1 in  (5), and obtain : 

 

  2(N) = 
 



d)(F2cos
2

1 2

0
N  .    (15)  

 

Our goal is to show that the integral in (15) is an unbounded function of N .  Just as  

 

was done for the integral in (10), we may decompose the integral in (15) into a pair of integrals,  

 

using the relations : cos 2(2 - ) = cos 2 , FN(2 - ) = FN() .  Then 2(N) = 
 



d)(F2cos
1

0
N  . 

 

We repeat the process, using the relations : cos 2( - ) = cos 2 , FN( - ) = FN() ; this yields : 

 

2(N) = 
 



d)(F2cos
2 2/

0
N      (16) 

 

Now make the following definition :  

 

       FN) - FN(/2 - ) = GN()           (17) 

 

Using the relation cos 2(/2 - ) = -cos 2 , and the definition in (17), we obtain :  
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2(N) = 
 



d)(G2cos
2 4/

0
N       (18)  

 

It is in this latter form that we will obtain the order of magnitude of 2(N).   

 

Clearly, the values of cos 2 over the interval [0, /4] are non-negative and decreasing.   

 

It would therefore be helpful if we could determine the behavior of the function GN( )  over  

 

this same interval.   

 

3. ESTIMATES OF INTEGRALS :  

 

 

The following estimate for the integral in (10) is appropriate for the Riemann definition of  

 

the integral :  

  )n;N(* = 



n

0k
N )n2/k(F

n

1
 (19)  

 

Using the same reasoning on the integral in (12), we may also define 

 

  
#
(N ; n) = 




n

0k
N )n4/k(J

n2

1
 (20)  

 

We find that if n is replaced by 2n in (19), we obtain the following relation, after simplification : 

 

  )n2;N(* = 
#
(N ; n) 

n2

)4/(FN 
  (21)  

 

Thus, the definitions in (19) and (20) are essentially equivalent for large n .   

 

 On the other hand, based on the same reasoning applied to the integrals in (16) and (18),  

 

make the following definitions : 

 

  )n;N(*
2 = 




n

0k
N )n2/k(F)n/kcos(

n

1
 ;  (22) 

 

  )n;N(#
2 = 




n

0k
N )n4/k(G)n2/kcos(

n2

1
 ;  (23) 

 

Note the following :  

 

 *(N ; n) ~ 
#
(N ; n) ~ *(N) ; )n;N(*

2  ~  #
2 (N ; n) ~ )N(2 , as n   (24)  
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Clearly, it follows from (8) that FN() > 0  for all .   This, of course, implies that JN() > 0  for all .    

 

We then see that the summands in (19) and (20) are positive ; therefore the estimates in (19)  

 

and (20) must also be positive.  In point of fact, we are only moderately interested in such estimates ;  

 

these are provided only as numerical checks in the subsequent computations.  Our real interest  

 

lies in the estimates given by (22) and (23).   

 

 If n in (22) is replaced by 2n, we obtain, after simplification :  

 

  )n2;N(*
2 = )n;N(#

2  (25)  

 

We then see that the two estimates in (22) and (23) are essentially equivalent.  Henceforth,  

 

we therefore use only the estimate in (23), and omit the superscript notation “#”.   

 

 For computational purposes, we have used N = 1000, n = 500 ; after some rather extensive  

 

computations, we find that )500;1000(2 = 36.54.  Also, we find that )500;1000(* = 181.76.   

 

The true values for N = 1000 are as follows : )1000(*  = 167, and )1000(2 = 35 .   

 

 The computations imply that the estimate in (23) is apparently dominated by the value  

 

of GN(0).  This observation, of course, needs to be confirmed.  The goal of the development in the  

 

following section is to reach this conclusion, which will imply TPC.   

 

4. ESTIMATE OF GN( AND PROOF OF TPC :  

 

 

 Our starting point is the following generalization of the Prime Number Theorem (PNT) :  

 

 
Np

ap ~ 
Nlog)1a(

N 1a





, a = 0, 1, 2, …  (26)  

This may be obtained by partial integration of the auxiliary function dx
xlog

x
N

2

a

  ; the derivation  

of (26) is left as an exercise for the reader.  It might be noted that this appears in SIREV, in  

 

slightly different form [2].  Note that for a = 0, (26) yields PNT.  The asymptotic behavior is,  

 

of course, exhibited as N  .   We may also remark that the sum in (26) is not substantially  

 

changed, in an asymptotic sense, if we exclude the prime p = 2 and restrict p to be odd.   
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 In this section, we use the relation in (26) to derive certain relations that evaluate the  

 

quantities FN() and GN() for all (positive) values of .  For our purpose, we restrict  for now  

 

to the  interval [0, /4].  Make the following definitions : 

 

  CN()  



Np3

pcos  , SN()  



Np3

psin   (27)  

As we recall, by (8) :  

 

  FN() = {CN()}
2 

+ {SN()}
2 

  (28) 

 

Using (27) : CN() = 
)!k2(

)p(
)1(

k2

Np3 0k

k 
 







= 









Np3

k2
k2

0k

k p
)!k2(

)1( .  Now using (26), we obtain : 

CN() ~


















Nlog)1k2(

N

)!k2(
)1(

1k2k2

0k

k
 , or : 

 

  CN() ~ 
Nlog

)Nsin(




 (29)  

 

Also, SN()=
)!1k2(

)p(
)1(

1k2

Np3 0k

k














  





 




Np3

1k2
1k2

0k

k p
)!1k2(

)1( ~


















Nlog)2k2(

N

)!1k2(
)1(

2k21k2

0k

k
,  

  or :  

 

  SN() ~ 
Nlog

)Ncos(1




 (30)  

 

It then follows from (28) that  

 

  FN() ~ 
Nlog

)2/N(sin4
22

2




 (31)  

 

We now make the relatively innocuous assumption that N is a multiple of 4 , or N = 4M, say.   

 

With this assumption, sin{N(/2 - )/2} = sin{M - N/2} = (-1)
M-1

 sin(N/2) ; then  

 

  FN(/2 - ) ~ 
Nlog}2/{

)2/N(sin4
22

2




 (32)  

 

From the definition given in (17), it follows that if   0,   /2 :  
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  GN() ~,














222

2

)2/(

11

Nlog

)2/N(sin4
 (33)  

 

It is not difficult to show that GN(0) = 4 4,1(N) 4,3(N) , where 4,j(N) = |{p  N : p  j (mod 4)}|,  

 

with j = 1 or 3 .  We know that the sets 4,1(N)  and 4,3(N) are equinumerous, meaning that  

 

4,1(N) ~  4,3(N) as N   .  This implies that each such quantity is ~ )N(*
2

1
  as N   .   

 

Therefore, we see that GN(0) ~ {*(N)}
2
 .  The first positive value of  that occurs as the argument  

 

of GN() in formula (23) is  = /4n .  We let  = k/4n , for 1  k  n , the values that appear as  

 

positive arguments of GN in (23).  Making this substitution in (33), this yields :  

 

GN(k/4n) ~ 














2

2

22

22

)kn2(

k
1

Nlog)k(

)n8/Nk(sinn64
, or equivalently, as N   :  

 

GN(k/4n) ~ 

22

n8/Nk

n8/Nksin(

Nlog

N
































2

2

)kn2(

k
1 , (k = 1, 2, …, n) (34)  

We note that over the interval [0, n] , the quantity 











2

2

)kn2(

k
1  is a decreasing function of k  

with range [0, 1] .  As we already know, FN(0) =  2)N(* ~ 
Nlog

N
2

2

, by PNT.  In the form given  

by (34), it is clear that if we let k  0 , GN(0) ~ 

2

Nlog

N









~ {*(N)}
2
 = FN(0) , once again.   

 

 Now the asymptotic formula given in (34) is valid as N   , but says nothing about  

 

asymptotic behavior as n   :  However, if we are to apply the formula in (23), we must  

 

consider n to be increasing indefinitely, as well as N .  We may get around this difficulty by  

 

supposing that n and N increase indefinitely in a dependent manner ; we find it convenient to  

 

suppose that N = 2n.  Henceforth, asymptotic behavior will implicitly be described as N   .   

 

In our computations, we assumed that N = 1000, n = 500.  As a further refinement in our  

computations, we may replace the quantity 

2

Nlog

N









by  2)N(* , which is certainly valid  

asymptotically.  We then make the definition :  
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 )N2/k(G#
N  =  2)N(*

2

4/k

4/ksin{
























2

2

)kN(

k
1 , k = 1, 2, …, N/2  (35)  

We may also define )0(G#
N  =  2)N(* , the limiting case in (35) as k  0 .   We may also  

 

extend the domain of k to k = 1+N/2 , 2+N/2, …, N – 1 , and make the additional definition  

 

for k = N : )2/(G#
N   =  2)N(* .   

 

 As we have seen (from (15), (23) and our other assumptions):  

 

)N(2 ~ 



2/N

0k
N )N2/k(G)N/kcos(

N

1
.  We may also assert that )N2/k(GN  ~ )N2/k(G#

N  . 

 

It then follows that : 

 

 )N(2 ~ 



2/N

0k

#
N )N2/k(G)N/kcos(

N

1
 (36)   

 

The advantage of using )N2/k(G#
N   in (36), as opposed to )N2/k(GN  , is that )N2/k(G#

N   

 

is non-negative over k[0, N/2) ; clearly, )N2/k(G#
N  = 0 iff k = 4, 8, …, 4[M/2] .  The  

 

same may not be said of )N2/k(GN  , as verified by computation.  Although incidental here,  

 

we may show from the definitions that the s'GN  and #
NG ’s share some interesting properties.   

 

Since a description of these properties would be distracting to the narrative, we indicate these  

 

in the Appendix.   

 

 Returning to the expression in (36), its other component, namely cos(k/N), is of course  

 

positive and decreasing over k[0, N/2) (and vanishes for k = N/2) .  We may therefore assert the  

 

following consequence of (36) :  

 

  )N(2  > 
N

)0(G#
N  (37)  

 

Since GN(0) ~ 

2

Nlog

N









, it follows that as N   : 

  )N(2  > 
Nlog

N
2

 (38)  
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Since 
Nlog

N
2

is an unbounded function of N, this implies TPC!  

 

 On the other hand, the following known result is attributable to Brun : 

 

  2(N) = O 










Nlog

N
2

 (39)  

 

Together with (38), this further shows that  

 

  2(N) 
Nlog

N
2

 (40)  

 

5. THE STRONG TWIN PRIME CONJECTURE :  

 

The famous Hardy-Littlewood Conjecture given in [1] (also known as the “strong”  

 

Twin Prime conjecture, which we denote as STPC) is an extension of TPC, and provides  

 

an estimate for the value of 2(N), which we now know is an unbounded function of N :  

 

 )N(2 ~ 
Nlog

N
C2

22 ~ 
N

3

22
xlog

dx
C2               (41)  

Here, C2 (the so-called Twin Primes Constant) is given by C2 = 














3p
2

)1p(

1
1  , where the  

product is over all odd primes.  Approximately, C2  0.6601618158 .  No attempt will be made  

 

in this paper to prove STPC.   

 

6.      A MORE GENERAL CONJECTURE : 

 

 It would appear that the method indicated in this paper may be used similarly (with  

certain modifications), to prove a variety of more general number-theoretic conjectures.   

 

However, no rigorous proofs are given in this section or subsequent sections ; we merely  

 

indicate a skeleton of a proof of how a rigorous development for the more general cases  

 

might proceed.  The most obvious generalization that comes to mind is the conjecture that  

 

2k(N) is unbounded ; here, 2k(N) is the counting function of the prime pairs (p, p+2k) with  

 

p  N.  Our starting point for this is the more general function : 
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 g2k:N (z) = 



N

3n

nz)k2n()n(  , N = 3, 4, … ;  k=1, 2,… (42)  

 

Incidentally, this explains the use of the notation g2:N(x) used in the case of the twin primes.   

 

The first non-zero exponent appearing in the expansion of (42) need not necessarily be  

 

equal to 3 ; for example, if k = 3, such exponent is 5, since the first such prime pair of the type  

 

(p, p+6) is (5, 11) and not (3, 9).    

 

  If the counting function of the prime pairs (p, p+2k) is denoted as 2k(N) , note that  

 

 2k(N) = g2k:N (1) .  A development similar to the preceding one yields the following :  

 

    2k(N) 


 


 d)|e(f|k2cos
2

1 2

0

2i
N   (43)  

 

 By the same process as used previously for the twin primes, we find that  

 

   2k(N) 


 


 d)|e(f|k2cos
2 2/

0

2i
N   (44)  

 

As before, we may deduce that 2k(N) is an unbounded function of N.   

 

7.         PRIME TRIPLETS : 

 

 Another application that comes to mind involves the function 2,4(N), which  

 

counts the number of prime triplets (p, p+2, p+6) with p  N.  In order to prove that  

 

2,4(N) is unbounded, we would begin with the polynomial function :  

 

 g2,4 :N (z) = 



N

3n

nz)6n()2n()n(  , N = 3, 4, … (45)  

In a more general case, we would define g2u,2v:N(x) =



N

3n

nx)v2u2n()u2n()n( .   

Note that, in order to avoid trivial cases (e.g., u = v = 1), we would need to impose  

 

additional conditions on u and v, in order to ensure that none of the triplet components  

 

are divisible by 3 (except possibly 3 itself) ; we find that we must exclude the cases where  
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u  v  1 (mod 3).  Assuming that such conditions are in place, we make the following  

 

definition :  

 2u,2v(N) =



N

3n

)v2u2n()u2n()n( =  g2u,2v:N (1)   (46)  

 

We proceed by a process similar to the development indicated in Section 2 .  

 

Then 2u,2v(N) = dz
z

)z(f

i2

1
)u2n()n(

1v2u2n

N
N

3n

 

 
  = 


  












N

3n

n

1v2u2

N dz
z

1
)u2n()n(

z

)z(f

i2

1
,  

 

or by reference to the definition in (44) :  

 

2u,2v(N) = dz
z

)z/1(g)z(f

i2

1
1v2u2

N:u2N

 
  (47)    

 

After further simplification, we obtain : 

 

2u, 2v(N) =  








 d)e(g)e(feRe
2

1 i
N:u2

i
N

2

0

)vu(i2   .  (48)  

It may be shown that the expression in (50) has the order 
Nlog

N
3

, which in turn shows that  

2u, 2v(N) is unbounded.  Clearly, this process can be extended to deal with any m-tuples of primes  

 

that are to be spaced apart non-trivially at pre-determined intervals.   

 

8. SOPHIE GERMAIN PRIME PAIRS :  

 We may also deal in like manner with the Sophie Germain primes, another class  

 

of prime pairs that has not been discussed in the preceding treatment.  The Sophie Germain  

 

primes, named in honor of the early 19
th

 century French female mathematician, are those  

 

primes p such that 2p+1 is also prime.  The initial functions that we use to deal with these  

are gSG:N (z) = 



N

3n

nz)1n2()n( , and SG(N) = 



N

3n

)1n2()n( =  gSG:N (1) .   The proof that  

there exist infinitely many Sophie Germain pairs (p, 2p+1) follows by a process that is  

analogous to that previously used.  We omit the derivation, and simply indicate the result :  

 SG(N) 


 


 d)e(f)e(feRe
2

1 2

0

i2
N

i
N

i    (49)  

 

The integrand reduces to the following :     )1p2sin(sin)1p2cos(pcos  ;  
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in this expression, all sums are over odd primes p  N .   

 

 Again using the estimates previously derived in (29) and (30) for CN() and SN(), we  

 

obtain the following estimates :  

 

  )1p2cos(  = cos CN(2) - sin SN(2) ~ 
Nlog2

)N2cos1(sinN2sincos




, or  

 

   )1p2cos(  ~ 
Nlog

Nsin)1Ncos(




 (50)  

 

Also,   )1p2sin(  = cos SN(2) + sin CN(2) ~ 
Nlog2

)N2cos1(cosN2sinsin




, or  

 

   )1p2sin(  ~ 
Nlog

Nsin)1Nsin(




 (51)  

 

Then, after simplification : 

 

    )1p2sin(sin)1p2cos(pcos   

 

 ~ 
Nlog

))2/N1cos(()2/Nsin(Nsin2
22


 . (52)  

 

We see that this has the same order of magnitude as FN() ; by the same reasoning as applied  

 

to the case of the twin primes, it follows that the integral in (49) is unbounded.   

 

 In this case, as well as in certain more general situations involving m-tuples of  

primes, the applicable expressions appear to lend themselves to comparable analysis.   

No doubt, many other interesting examples will occur to the reader.  Some of these, at least,  

 

appear to be susceptible to the method indicated in this paper (with suitable modifications) .   

 

In all such cases, the applicable counting function is shown to be unbounded from the  

 

unboundedness of the corresponding integral.  Generally, such m-tuples of primes will be of  

 

order 
Nlog

N
m

, which is an unbounded function of N .   
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APPENDIX 

 

The following properties are easily proved by the appropriate definitions, over the domain  

 

k = 0, 1, …, N :  

 

)N2/k(G#
N  = - )N2/k2/(G#

N   ; )N2/k(GN  = - )N2/k2/(GN   ;  (i)  

 

Equivalently, if k is replaced by N – k , the negative of the original term is obtained ; special  

 

considerations must be made at the end points k = 0 and k = N .  The relations in (i) easily imply  

 

the following :  

 

 



N

0k

#
N 0)N2/k(G  ; 




N

0k
N 0)N2/k(G   ; (ii)  

 

 0)4/(G#
N   ; 0)4/(GN   ;  (iii)  

 

Also, the following easily follows from the definition of GN in (17) :   

 

 


d)(G
2/

0

N  = 0  ,  (iv)  

 

Another interesting result is the following :  

 

 

 



2/N

0k

#
N )N2/k(G

N

1
 ~ 

Nlog

N5.2
2

 (v)  

 

Proof of (v) : From the definition of #
NG given  in (35), the special value at k = 0, and PNT, we  

 

see that the sum in (v) (call it SN) is ~  
Nlog

N
2 









 2

16
{ 









 








 


 N

2/Nk
2

2

2

22/N

0k

2

k

)4/k(sin

k

)4/k(sin

16
} . 

 

As N  , the second sum in the preceding expression tends to vanish.  If JN represents the sum  

 


 4/Nk1

2)1k2(

1
, we then see that SN ~ 

Nlog

N
2 









 2

16





























NN

2

J
4

1
J

2

1

16
.  Also, it is easily  

shown that JN  
8

2
 as N   .  Then SN ~ 

Nlog

N
2 









2

5
 , after simplification, which proves (v) .   
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 In view of the last result, the formula given in (36) and STPC (assuming the latter to be  

 

true), we may regard the “average cosine” appearing  in (36) to equal 2C2/(2.5) = (0.8)C2 ,  

 

which is approximately equal to 0.52813.  By this computation, such “average ” appearing  

 

in (36) is roughly 58.   
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