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ABSTRACT : This paper is a revised version of a previous paper by the author  
that, after publication, was found to contain an error.  This paper supersedes and  
replaces the previous paper.  A modified form of the Collatz transformation is  
formulated, leading to the concept of a modified Collatz chain.  A smallest  
counterexample N0 to the Collatz Conjecture is hypothesized ; the existence of N0  
implies that N0 generates an infinite sequence {Nk}, each of whose elements is at least  
as large as N0 , as well as certain auxiliary sequences {fk}, {Fk} and {Sk}.  A formula  
for Nk is derived, dependent on the starting value N0.  We show that k ≤≤≤≤ Fk ≤≤≤≤ Ck for  
all k, where C = log 3/log 2, and also that N0 must be unbounded as k increases,  
which contradicts the requirement that N0 be fixed, and therefore bounded .   
This contradiction establishes the Collatz Conjecture.   
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1. INTRODUCTION :    

This paper is a revised version of a paper [1] by the author that was previously  

published as a proof of the Collatz Conjecture, then subsequently found to contain  

an error that negated such proof .  The error was first brought to the author’s  

attention by Mr. Jeff Norris of Paris Junior College, and later by Dr. Jeffrey C.  

Lagarias of the University of Michigan in a bibliographical paper [2] , which also  

contains mention of reference [3].  Unfortunately, the error was not noticed until  

after publication of the original paper.   

The error discovered in the author’s original paper [1] has essentially been  

circumvented and eliminated in this paper, since a somewhat different and more  

direct method of proof has been used.  However, much of the original notation 

previously adopted, along with the preliminary discussion, has been retained in  

this paper.  Nevertheless, it has been deemed prudent to “start afresh” and redefine  

the appropriate terms for the purposes of clarity, as if this were a brand-new paper .  

In effect, it is as if the original paper [1] had never existed.   

Much literature has emerged in recent years regarding the Collatz conjecture  
 
 (CC), also known as the “3x+1” conjecture.  A recent paper [3] by Shaw gives a  
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brief history of the problem and of some of the attempts to solve it .  A more  
 
complete bibliography of the prior efforts made to prove CC is given in [2].  
 

Simply stated, if we begin with an arbitrary positive integer n, we define  

the “Collatz transformation” T(n) as follows : 

If n is even, T(n) = n /2  ; if n is odd, T(n) = 3n+1  (1)  

In the sequel, variables denote positive integers, unless otherwise indicated.   

The k-th convolution of the Collatz transformation is denoted as Tk(n) .    

CC states that for all n ≥≥≥≥ 1, there exists a positive integer k such that Tk(n) = 1.   

This author is pleased to report that an elementary (and simplified)  
  

proof of CC has been found, and this is presented in this paper.   
 
2. THE MODIFIED COLLATZ TRANSFORMATION :  
 

We find it convenient to modify the Collatz transformation in a certain way .  

The “modified” Collatz transformation U(n) is defined as follows for all odd n ≥≥≥≥ 1 :  

U(n) = (3n+1)/2e, where 2e(3n+1)   (2)  

That is, e is the highest exponent of 2 dividing 3n+1 .  Let Uk(n) denote the  

k-th convolution of U.  We then see that Uk(n) is odd for all odd n and all k.   

Essentially, U  bypasses the steps of division by powers of 2 that are part and parcel  

of the T-transformation, since these steps are incorporated at once in the U-

transformation.  We also see that CC is equivalent to the statement that for all odd  

n ≥≥≥≥ 1, there exists a positive integer k such that Uk(n) = 1 .  

 We note that for all k and all odd n, there exists an exponent e = e(n,k) 
 
such that  
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 Uk+1(n) = {(3Uk(n)+1}/2e , and 2e{3Uk(n)+1}  (3) 
 
Thus, a “modified Collatz chain” {n, U(n), U2(n), U3(n), …} is generated by 
 
applying the modified Collatz transformation repeatedly, beginning with a  
 
given odd n ; note that each exponent “e” in this relation is ≥≥≥≥ 1.   We also see  
 
that a given starting value of n generates an“auxiliary chain”, or sequence  
 
{e(n, 1), e(n, 2), e(n, 3), …} ; it is possible, a priori, that the same auxiliary chain  
 
might be generated by another starting value of n.   CC states that such modified  
 
Collatz chains might be considered to terminate with a “1” and therefore to be  
 
necessarily finite ; since U(1) = 1, there might seem to be no point in continuing  
 
the Collatz chain after the first occurrence of a “1”.   This, of course, also applies  
 
to the corresponding auxiliary chains.  Nevertheless, for our purposes, we find it  
 
convenient to consider a modified Collatz chain as infinite under any  
 
circumstances.   If  n0 > 1 is our starting value, and if some r ≥≥≥≥ 1 exists  
 
such that Uk(n0) = 1 for all k ≥≥≥≥ r and  Uk(n0) > 1 for all k with 0 ≤≤≤≤ k < r , we call  
 
n0 a “normal” number ; that is, we deem the modified Collatz chain to be  
 
infinite, even for normal numbers.  For our purposes, we also deem n0 = 1  
 
to be a normal number.  For all normal numbers, we note that the corresponding  

values of ek are equal to 2 for all k ≥≥≥≥ r .  By contrast, if Uk(n0) > 1 for all k ≥≥≥≥ 0 ,  

we call n0 an “abnormal” number .   

 Thus, CC is equivalent to stating that there exists no abnormal n .   

For brevity, we write Uk(n0) = nk , with U0(n) = n = n0, the starting value.   
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 By repeated application of the recurrence given in (3), we obtain the 

following, for some sequence {ek} and starting value n0 : n1 = (3n0+1)/2e1 ;  
 
n2 = (3n1 + 1)/2e2 = (32n0 + 3 + 2e1)/2e1+e2  ; n3 = (3n2 + 1)/2e3  
 
= (33n0 + 32 + 3*2e1  + 2e1+e2)/2e1+e2+e3   ; etc.  For brevity, we write  
 
Ek = e1+ e2+ e3+…+ ek .  In general, we obtain the following relation satisfied 
 
by nk and n0 :  
  2Ek nk - 3kn0  = sk , k = 0, 1, 2, …,   (4) 
 

where 
                     k-1 

      sk = ΣΣΣΣ 3k-1-j 2Ej  (5) 
           j=0 

For completeness, we define e0 = E0 = s0 = 0 .  Clearly, given n0, this  
 
determines the “auxiliary” sequences {ek} , {Ek} and {sk}.  We may obtain  
 
successive values of sk (given {Ek}) from the following (easily verified)  
 
recurrence relation : 
 

sk+1 = 3sk  + 2Ek , k = 0, 1, … , with s0 = 0 .  (6) 
 
Again, the sequences {ek}, {Ek} and {sk} are determined by n0.  If n0 is normal,  
 
the sequence {ek} contains an infinite string of “2”’s for all sufficiently large k .    
 
Our aim, of course, is to show that this latter situation must always prevail.    
 
3. PROPERTIES OF THE SMALLEST ABNORMAL NUMBER :    
 

In this section, we will suppose that N0 > 1 is the smallest abnormal  
 
number.  Moreover, to distinguish the auxiliary sequences corresponding to  
 
N0 from all other auxiliary sequences, we will denote these as {fk} ,{Fk} and {Sk} ,  
 
with the customary meanings and relations assigned as above.   
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 By definition of N0, we require that Nk = Uk(N0) ≥≥≥≥ N0 for all k , where all  
 
Nk’s will also be abnormal .  Our aim is to show that the initial assumption as to  
 
the existence of N0 leads to a contradiction .   
 
 We begin with the relation in (4), which we may express as follows :  
 
   2Fk Nk - 3k N0  = Sk  , k = 0, 1, …  (7)  
 
We also have :  

  jF
1k

0j

j1k
k 23S ∑∑∑∑

−−−−

====

−−−−−−−−====  , k = 1, 2, …, with S0 = 0 . (8)  

 
         Sk+1 = 3Sk  + 2Fk , k = 0, 1, … (9)  
 
 We already know that 1 is a normal number.  Note that for n0 = 1, we  
 
have Ek = 2k for all k ≥≥≥≥ 0 .  For this special case, using (5), we find that  
 
sk = 4k – 3k.  Applying the formula in (4), we have (for n0 = 1) :  
 
4knk – 3k = 4k – 3k , which implies nk = 1 for all k ≥≥≥≥ 0, as expected.    
 
 We now explore the properties that N0 must satisfy ; also, we seek to  
 
determine the conditions that the auxiliary sequences corresponding to N0  
 
must satisfy.   
 
 Suppose initially that N0 is such that the sequence {fk} is the minimum  
 
possible ; that is to say, let us assume that fk = 1 for all k ≥≥≥≥ 1 .  Then Fk = k for all  
 
k ≥≥≥≥ 0 .  Applying the formula in (8), we find that Sk = 3k – 2k for all k ≥≥≥≥ 0 .   
 
Then, applying the formula in (7), we obtain : 2k(Nk + 1) = 3k(N0 + 1) .  The  
 
general “solution” {N0 , Nk} of this last Diophantine equation yields :  
 
N0 = -1 + pk 2k, Nk = -1 + pk 3k, where pk is a positive integer (since N0 and Nk  
 
are to be positive).  However, we also require that N0 and Nk are to be odd, and  
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that N0 be the smallest abnormal number.  These conditions force us to set pk to be  
 
some even number for all k ≥≥≥≥ 0 .  Therefore, under this scenario, we deduce that   
 
N0 = Ak * 2k+1 - 1  for some positive integer Ak ; this, however, is absurd, since N0  
 
is assumed to be a fixed integer, and therefore bounded (with increasing k) . We  
 
must therefore exclude the possibility that fk = 1 for all k ≥≥≥≥ 1 .   
 
 Next, let us suppose that N0 is such that each fk is the maximum possible.   
 
Applying the formulas in (7) and (9), along with the additional property that  
 
Nk ≥≥≥≥ N0, we obtain : S1 = 1,  N1 = (3N0+1)/2F1 ≥≥≥≥ N0 , hence F1 = 1 ; then S2 = 5,   
 
N2 = (9N0+5)/2F2 ≥≥≥≥ N0 , hence F2 = 3 ; then S3 = 23,  N3 = (27N0+23)/2F3 ≥≥≥≥ N0 ,  
 
hence F3 = 4 ; etc.  In general, the “maximal” sequence {Fk} is obtained by  
 
requiring the following conditions :   
 
        2Fk  < 3k < 21+Fk  (10)  
 
We find that Fk is uniquely determined from this last relation ; namely :  
 
 Fk = [Ck] , where C = log 3/log 2 ≈≈≈≈ 1.58496250 (11)  
 
 Note that the values of fk (for k ≥≥≥≥ 1) obtained from (11) (for the maximal  
 
sequence {fk}) are either 1 or 2 .  This implies that for our putative smallest abnormal  
 
number N0, the corresponding auxiliary sequence {fk} (for k ≥≥≥≥ 1) must consist entirely  
 
of 1’s or 2’s, with f1 = 1, and it must contain at least one 2 .    
 
4. PROOF OF THE COLLATZ CONJECTURE :  
 
 Next, suppose that N0 is such that {Fk} is either the so-called “maximal”  
 
sequence in (11), or an “intermediate” sequence (where at least one, but not all of  
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the fk’s equal to 2 are changed to a 1).  We see from (8) (or (9))  that Sk is completely  
 
determined as a function of {Fk}, and we may regard (7) as a  Diophantine equation  
 
to be solved for N0 and Nk , valid for all k ≥≥≥≥ 0.   
 
 We also note that gcd{Sk, 6} = 1, which is actually true for all starting  
 
values N0 , or from our new outlook, for all starting auxiliary sequences {Fk}.    
 
Since 2Fk, 3k and Sk are mutually coprime, we see that (7) always has “solutions”  
 
{Nk, N0} for any given k .  Likewise, it is true that the following equation always  
 
has solutions {uk, vk} if {Fk} is given by (11), in which case Sk is given :   
 
  3k vk - 2Fk uk = Sk  , k = 0, 1, …  ; (12)  
 
For any given {Fk}, k ≥≥≥≥ 1, let us denote the minimum positive solutions of (12)  
 
as {uk,vk} ; note that this requires one or both of the conditions : 0 < uk < 3k,   
 
0 < vk < 2Fk .  We also define u0 = v0 = 0 .  We see from (12) that vk must necessarily  
 
be odd for all k ≥≥≥≥ 1, since Sk is odd.  However, since uk is the minimum positive  
 
solution of the congruence 2Fk uk ≡≡≡≡ -Sk (mod 3k), it may be either odd or even .   
 

Replacing k by k+1 in (12), we obtain : 3k+1 vk+1 - 2Fk+1 uk+1 = Sk+1  .   
 

Now using the relation in (9) and subtracting, we obtain :  
 
3k+1 vk+1 - 2Fk+1 uk+1 = 3 {3k vk - 2Fk uk} + 2Fk , which yields :  
 
3k+1{ vk+1 - vk } = 2Fk {2fk+1 uk+1 – (3uk - 1)} .  This implies that vk+1 ≡≡≡≡ vk (mod 2Fk ) ,  
 
and 2fk+1 uk+1 ≡≡≡≡ 3uk – 1 (mod 3k+1).  More importantly, it is clear by comparison of  
 
(7) and (12) that Nk ≡≡≡≡ -uk (mod 3k) and N0 ≡≡≡≡ -vk (mod 2Fk) .   
 
 There are infinitely many k such that 0 < vk < 2Fk and vk is odd .   
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Indeed, inspection of Table 1 in the Appendix shows that 0 < vk < 2Fk for all 0 < k ≤≤≤≤ 25.   
 
For all such k, then N0 = Bk*21+Fk - vk , where Bk is a positive integer (since N0 must be  
 
odd), hence N0 > 2Fk  .  However, since N0 must be bounded, this is clearly absurd.   
 
 This eliminates all of the possible cases under the assumption that N0  
 
exists.  Since the existence of a finite value for N0 implies that N0 is unbounded,  
 
the contradiction establishes CC.    
 
 In Table 1 of the Appendix, we indicate the values of vk and uk, along  
 
with the values of k and Sk , if Fk = [Ck] for k = 0, 1, …, 25 .  It is evident that  
 
vk ≡≡≡≡ vj  (mod 2Fk) for all 0 ≤≤≤≤ j ≤≤≤≤ k .   
 
 As we have shown, for any starting value n0 , the auxiliary sequence {ek} must  
 
consist entirely of “2”’s for all sufficiently large values of k.  That is, there are no  
 
abnormal numbers.   
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 APPENDIX 
                       Table 1 

 

k Fk = [Ck]  uk vk Sk 
     

0 0 0 0 0 
1 1 1 1 1 
2 3 5 5 5 
3 4 7 5 23 
4 6 5 5 85 
5 7 7 5 319 
6 9 5 5 1085 
7 11 1097 1029 3767 
8 12 1645 1029 13349 
9 14 11075 9221 44143 
10 15 16612 9221 148813 
11 17 145319 107525 479207 
12 19 108989 107525 1568693 
13 20 163483 107525 5230367 
14 22 122612 107525 16739677 
15 23 7358371 4301829 54413335 
16 25 5518778 4301829 171628613 
17 26 72848248 37856261 548440271 
18 28 151491308 104965125 1712429677 
19 30 985314581 910271493 5405724487 
20 31 1477971871 910271493 17290915285 
21 33 1108478903 910271493 54020229503 
22 34 1662718354 910271493 170650623101 
23 36 24782833472 18090140677 529131738487 
24 38 89194509224 86809617413 1656114692197 
25 39 557436068557 361687524357 5243221983535 

 
     C = log 3/log 2 ≈≈≈≈ 1.58496250 ; Fk = [Ck] ; 

 
                          2[Ck] uk – 3k vk = Sk , k ≥≥≥≥ 1 ; u0 = v0 = 0 ; 
 

for k ≥≥≥≥ 1, uk and vk are the minimum positive integers satisfying this equation ;  
 
     v25 = 1 + 22 + 210 + 213 + 215 + 216 + 222 + 225 + 226 + 228 + 229 + 234 + 236 + 238  
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