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ABSTRACT :  
 

An elementary proof of the Riemann Hypothesis (RH) is presented.   
We begin with the known Laurent expansion for ζζζζ(1-s), where s ≠≠≠≠ 0 is a  
complex number in the critical strip and ζζζζ is the Riemann Zeta function.  
This implies a simple power series identity satisfied by any non-trivial zero ρρρρ.   
In turn, this implies another pair of power series in terms of P = ρρρρ(1 - ρρρρ) and  
P .  Under the assumption that ρρρρ is not on the critical line, the last two power  
series may be subtracted, yielding yet another power series in terms of |P | .   
We show, however, that the latter power series is ill-defined, which implies  
that P = P , i.e., ρρρρ must lie on the critical line, proving RH.   
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A PROOF OF THE RIEMANN HYPOTHESIS  
 

By  
 

Paul S. Bruckman  
38 Front Street, #302, Nanaimo, BC V9R 0B8 (Canada)  

 
Phone and Fax : (250) 591-2290  

e-mail : pbruckman@hotmail.com  
 
 
1. INTRODUCTION :   
 

An elementary proof of the famous Riemann Hypothesis (RH) is reported.   
 
A moderate knowledge of the theory of the Riemann Zeta function is assumed  
 
throughout this paper.   An excellent exposition of many aspects of this theory is  
 
given by Derbyshire in his book [1].  Also, the known formulas related to the  
 
Riemann Zeta function that are indicated in this paper are given in [2].  Appropriate  
 
tables of values are found at the web sites indicated in [3] and [4].   Following  
 
standard practice, ζζζζ(s) is the Riemann Zeta function, where s = x +it is any complex  
 
number ≠≠≠≠ 1 ; ζζζζ is analytic everywhere except at s = 1, where it has a simple pole  
 
with a residue equal to 1 .  We let S

w
 denote the (closed) critical strip  

 
{s = x+it  : 0 ≤≤≤≤ x ≤≤≤≤ 1, -∞∞∞∞ < t < ∞∞∞∞} and L the critical line {s = 1/2+it  : -∞∞∞∞ < t < ∞∞∞∞} ; also, 
 
S denotes the open critical strip {s = x+it  : 0 < x < 1, -∞∞∞∞ < t < ∞∞∞∞} .     
 
 We let ρρρρ = σσσσ + iττττ denote any non-trivial zero of ζζζζ  (i.e. lying in S).  As we  
 
know, ζζζζ(ρρρρ) = ζζζζ(1 - ρρρρ) = ζζζζ (((( )))) (((( ))))ρρρρ−−−−ζζζζ====ρρρρ 1  = 0 .  Due to the symmetry of the zeros, we  
 
will find it convenient to define the “open critical quarter-strip”  
 
S1 = {s = x+it  : 0 < x < 1/2,  t > 0} .   Also, it is known that there are no zeros of ζζζζ  
 
on either of the external boundaries of S or on the semi-axis segment 0 ≤≤≤≤ x ≤≤≤≤ 1 .   
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Because of this, in order to prove RH, it suffices to prove that there are no  
 
non-trivial zeros of ζζζζ in S1 . In fact, all the known non-trivial zeros of ζζζζ lie on L  
 
(and occur in conjugate pairs) .  Riemann himself hypothesized in 1859 that all  
 
the non-trivial zeros of ζζζζ lie on L .  G. H. Hardy, in 1914, proved  that there are  
 
infinitely many zeros of ζζζζ on L .  Given that the non-trivial zeros of ζζζζ above the  
 
x-axis are ordered by magnitude of modulus, Xavier Gourdon and Patrick Demichel,  
 
in 2004, showed that the first 1013 zeros all lie on L .   We may label such zeros as  
 
ρρρρ1,  ρρρρ2,  ρρρρ3,  etc.  If there are any ρρρρ∉∉∉∉L , such ρρρρ must satisfy |ρρρρ|> 2.5 * 1012, approximately.   
 
It may be added that the first three non-trivial zeros (with ττττ > 0), are (approximately)  
 
ρρρρ1 ≈≈≈≈ 1/2 + 14.13472514i , ρρρρ2 ≈≈≈≈ 1/2 + 21.02203964i  and ρρρρ3 ≈≈≈≈ 1/2 + 25.01085758i  ; then  
 
|ρρρρ1| ≈≈≈≈ 14.14356585 , |ρρρρ2| ≈≈≈≈ 21.02798494 , |ρρρρ3| ≈≈≈≈ 25.01585491 , also approximately .   
 
2. ADDITIONAL DEVELOPMENT :  
 
 We begin with the following known Laurent expansion for ζζζζ(1 - s), valid in S :  
 

 ζζζζ(1 - s) = n

0n

n s
!ns

1
∑∑∑∑
∞∞∞∞

====

γγγγ
++++

−−−− ,  (1)  

where the γγγγn’s are the Stieltjes numbers, given by :  
               

 γγγγn = lim  N→→→→ ∞∞∞∞ { ∑∑∑∑
====

N

1k 1n
)N(log

k
)k(log 1nn

++++
−−−−

++++

} (2) 

            

In particular, setting s = ρρρρ, we obtain the expansion :  
 

 1
!n

1n

0n

n ====ρρρρ
γγγγ ++++

∞∞∞∞

====
∑∑∑∑  (3) 

 
Note that (3) is valid for all ρρρρ, and that the γγγγn’s are independent of any ρρρρ ; it should  
 
also be noted that the approximate values of the γγγγn’s are known to great accuracy,  
 
up to at least n ≤≤≤≤ 78 (see [3]) , and vary in sign, with no discernible pattern in their  
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sign being apparent .   
 

Given the convergence of the series in (3), it follows that ====
γγγγ
!n
|| n o 









ρρρρ ++++1n||
1

 .   

We note that the γγγγn’s are independent of any value of ρρρρ .  We write r = |ρρρρ|, r1 = |ρρρρ1|, 
 
etc.  Since the ρρρρ’s are any non-trivial zeros of ζζζζ , we may say that  
 

1n

1

nn

r
a

!n
||

++++









====

γγγγ
, n = 0, 1, 2, …, where an ≥ 0 , an = o(1)  (4)  

 
 Since the relation in (3) is valid for all ρρρρ∈∈∈∈S, it is also true for 1 - ρρρρ .   
 
Note that ρρρρ ≠≠≠≠ 1 - ρρρρ, i.e., ρρρρ ≠≠≠≠ 1/2 ; also, ρρρρ ≠≠≠≠ 0, 1 - ρρρρ ≠≠≠≠ 0.    We may therefore subtract the  
 
two relations (after first dividing by ρρρρ and 1 - ρρρρ, respectively), as follows :  
 

{{{{ }}}}nn

1n

n )1(
!n

ρρρρ−−−−−−−−ρρρρ
γγγγ

∑∑∑∑
∞∞∞∞

====

 = 
ρρρρ−−−−

−−−−
ρρρρ 1

11
 = 

)1(
21
ρρρρ−−−−ρρρρ
ρρρρ−−−−
 .  For brevity, write P = ρρρρ(1 - ρρρρ) .  We also  

 
employ the following well-known identity, valid for all x and y and natural n :   
 

xn - yn = (x - y) kk21n
]2/)1n[(

0k

)xy()yx(
k

k1n
−−−−++++







 −−−−−−−− −−−−−−−−
−−−−

====
∑∑∑∑  (5)  

 
If we set x = ρρρρ and y = 1 - ρρρρ in (5), we may simplify the foregoing equation as follows :  
 

====
ρρρρ−−−−

P
21 k

]2/)1n[(

0k1n

n )P(
k

k1n
)12(

!n
−−−−







 −−−−−−−−
−−−−ρρρρ

γγγγ
∑∑∑∑∑∑∑∑
−−−−

====

∞∞∞∞

====
.  We may cancel the term (1 - 2ρρρρ), since ρρρρ ≠≠≠≠ 1/2 .  

We then obtain : 1
)!1k2n(n

kn
)P( 1k2n

0n0k

1k ====
++++++++

γγγγ







 ++++
−−−− ++++++++

∞∞∞∞

====

∞∞∞∞

====

++++ ∑∑∑∑∑∑∑∑ , or by a change of notation :  

 

(((( )))) 1PU 1n

0n
n ====−−−− ++++

∞∞∞∞

====
∑∑∑∑ ,  (6)  

where 
 

Un = 
)!1n2k(k

kn 1n2k

0k ++++++++
γγγγ








 ++++ ++++++++
∞∞∞∞

====
∑∑∑∑  (7)  

 
Let Q  ≡≡≡≡ |P| .  Note that the Un’s are independent of the ρρρρ’s, hence of P or Q .   
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As in the previous argument, it follows that |Un| = o 







++++1nQ

1
 for all Q .  

 
 Computations have been performed of the quantities Un for 0 ≤≤≤≤ n ≤≤≤≤ 100, and these  
 
are shown in Table 1 .  Also, the sum indicated in (6) has been computed for Pk ,  
 
k = 1, 2, 3, and has been found to converge to 1 within the limits of the accuracy  
 
attainable with the computational program . Naturally, the number of terms required to  
 
attain a pre-determined degree of accuracy in the sum increases as Pk increases.   
 

We find that P = σσσσ(1 - σσσσ) + ττττ2 +iττττ(1 - 2σσσσ) ; hence Q2 = PP  = {σσσσ(1 - σσσσ) + ττττ2 }2 + ττττ2(1 - 2σσσσ)2 .  
 

Let R = Re(P) = σσσσ(1 - σσσσ) + ττττ2  .  Note that P = Q = R iff ρρρρ∈∈∈∈L ; otherwise, Q > R .   
 
Also note that P1 = ++++ττττ 2

1 )(  ¼  ≈≈≈≈ 200.040451 ; P2 = ++++ττττ 2
2 )(  ¼  ≈≈≈≈ 442.1761506  ;  

 
P3 = ++++ττττ 2

3 )(  ¼  ≈≈≈≈ 625.7929969 .   
 
2. PROOF OF RH :  
 
 At this point, we assume that ρρρρ∈∈∈∈S1, which implies that Im (P) = ττττ(1 - 2σσσσ) > 0 .   
 
Under this assumption, it is clear that P ≠≠≠≠ P .  Returning to (6), if we replace ρρρρ by ρρρρ , P is  
 

replaced by P , hence (((( )))) 1PU
1n

0n
n ====−−−−

++++
∞∞∞∞

====
∑∑∑∑ .  Subtracting this from equation (6) as before, we  

obtain : {{{{ }}}}
PP

)PP(
P
1

P
1

PP)1(U nn1n
n

1n

−−−−−−−−
====−−−−====−−−−−−−− ++++

∞∞∞∞

====
∑∑∑∑  

2Q
)PIm(i2−−−−

====  .  On the other hand, using  

the identity in (5) again, this time with x = P, y =P , we obtain the following :  
 

2Q
)PIm(i2−−−− k2k21n

]2/)1n[(

0k
n

1n

1n }Q{}R2{
k

k1n
)}PIm(i2{U)1( −−−−







 −−−−−−−−
−−−−==== −−−−−−−−

−−−−

====

∞∞∞∞

====

++++ ∑∑∑∑∑∑∑∑

1k2n
n

0n

n

0k

k2k U}R2{
n

kn
)1(Q)1()}PIm(i2{ ++++++++

∞∞∞∞

====

∞∞∞∞

====







 ++++
−−−−−−−−==== ∑∑∑∑∑∑∑∑  , or after a change in notation :  

 {2i Im(P)} n
2n2

0n

1n VQ)1()}PIm(i2{ ++++
∞∞∞∞

====

++++∑∑∑∑ −−−−====  ,  (8) 

where 
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 Vn = 1n2k
k

0k

k U}R2{
k

kn
)1( ++++++++

∞∞∞∞

====







 ++++
−−−−∑∑∑∑  (9) 

 
Although the U’s in this last expression are independent of the ρρρρ’s, this is not true of  
 
the R’s and of the V’s ; therefore, a more appropriate notation for Vn would be Vn(ρρρρ) .   
 
Cancelling the factor 2i Im(P) ( = 2iττττ(1 - 2σσσσ) ) from both sides of (8), as allowed under  
 
the assumption that ρρρρ∈∈∈∈S1, we obtain :  
 

  1V}Q{ n
1n2

0n

====−−−− ++++
∞∞∞∞

====
∑∑∑∑   (10)  

Arguing as before, we deduce that|Vn|= o








++++2n2Q
1

 , hence Vn →→→→ 0 as n →→→→ ∞∞∞∞ .   

 
 On the other hand, since the U’s in (9) are independent of the ρρρρ’s and R’s,  
 
the absolute value of each term of the sum in (9) increases without bound as r increases,  
 
due to the presence of the term (2R}k .  Therefore, the sum “defining” Vn in (9) is divergent.    
 
 This contradicts the result that Vn →→→→ 0 as n →→→→ ∞∞∞∞  ;  thus, the definition of Vn is  
 
somehow faulty.   Our fallacy in defining Vn was our assumption that ρρρρ∈∈∈∈S1, which is  
 
equivalent to the assumption P ≠≠≠≠ P ; this, in turn, is equivalent to assuming that σσσσ ≠≠≠≠ 1/2 .   
 
We conclude, therefore, that we must have σσσσ = 1/2 , thus proving RH !    
 
3. CONCLUSION AND ACKNOWLEDGMENTS :  
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and mentor A.O.L. Atkin, Emeritus of the University of Illinois.  Also, the author  
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extensive computations using Mathematica, corroborating some of the assertions made  
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as well as his insertion of this paper on his web site [5] . Grateful acknowledgment is  
 
also made to the anonymous referee(s) for valuable suggestions that tended to improve  
 
this presentation .   
 
 The author is well aware of the profound effect that this proof will have on  
 
many aspects of number theory.  In particular, numerous results that have been 
 
stated as being conditional on the truth of the Riemann Hypothesis may now be  
 
laid to rest as bona fide theorems.  It is not the intention of this author to enumerate  
 
such previously “conditional” results ; this has been done elsewhere and much  
 
more comprehensively by numerous mathematicians of superior quality.  We will  
 
only mention a pair of such results that struck this author as particularly interesting,  
 
and that may now be stated as unconditional theorems  ; the first deals with the gaps  
 
between consecutive primes, the second with the difference between the prime  
 
counting function and the logarithmic integral :  
 
 (*)   If {pn} is the sequence of primes, then (pn+1 - pn) ≤≤≤≤ (pn)1/2 log pn   (11)  
 
 (**)     ππππ(x) = Li(x) + O(x½ log x)  (12)  
 
Undoubtedly, many more previously conditional results will occur to the reader.   
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    TABLE 1     

         

n Un  n Un  n Un  

         

0 -0.07721566  41 4.396E-113  82 -1.5199E-253  

1 0.00055402  42 -8.856E-117  83 -4.9704E-257  

2 4.9011E-06  43 -2.238E-119  84 -6.0173E-261  

3 -1.3911E-07  44 -1.044E-122  85 9.7808E-265  

4 3.0123E-10  45 1.352E-126  86 5.9882E-268  

5 8.6073E-12  46 4.105E-129  87 1.1889E-271  

6 -2.8038E-14  47 1.933E-132  88 3.4171E-276  

7 -2.8319E-16  48 -8.149E-137  89 -4.7589E-279  

8 7.2411E-19  49 -5.594E-139  90 -1.4461E-282  

9 6.0233E-21  50 -2.782E-142  91 -1.7232E-286  

10 -7.2257E-24  51 -1.23E-146  92 1.7488E-290  

11 -8.3114E-26  52 5.639E-149  93 1.1797E-293  

12 -7.9128E-30  53 3.093E-152  94 2.3097E-297  

13 7.0516E-31  54 3.787E-156  95 1.1758E-301  

14 8.4084E-34  55 -4.123E-159  96 -5.9206E-305  

15 -3.328E-36  56 -2.641E-162  97 -1.8955E-308  

16 -8.1497E-39  57 -5.077E-166  98 -2.4731E-312  

17 5.5601E-42  58 2.059E-169  99 6.9902E-317  

18 3.7728E-44  59 1.718E-172  100 1.0060E-319  

19 2.3185E-47  60 4.431E-176     

20 -8.6221E-50  61 -5.568E-180     

21 -1.5279E-52  62 -8.408E-183     

22 3.9544E-56  63 -2.756E-186     

23 3.5569E-58  64 -7.199E-191     

24 2.824E-61  65 3.003E-193     

25 -3.1501E-64  66 1.262E-196     

26 -7.2218E-67  67 1.584E-200     

27 -2.4227E-70  68 -7.223E-204     

28 6.6986E-73  69 -4.287E-207     

29 8.6093E-76  70 -8.756E-211     

30 5.2497E-80  71 8.104E-215     

31 -7.6324E-82  72 1.066E-217     

32 -6.6678E-85  73 3.028E-221     

33 7.5233E-89  74 1.647E-225     

34 5.4536E-91  75 -1.835E-228     

35 3.6082E-94  76 -7.358E-232     

36 -7.5427E-98  77 -1.067E-235     

37 -2.636E-100  78 1.746E-239     

38 -1.44E-103  79 1.279E-242     

39 3.383E-107  80 2.856E-246     

40 9.007E-110  81 7.24E-251     
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